
How Are Software Defects Found? The Role of Implicit Defect Detection,
Individual Responsibility, Documents, and Knowledge

Mika V. Mäntylä¹ Juha Itkonen¹
¹ Aalto University

mika.mantyla@aalto.fi, juha.itkonen@aalto.fi,

Corresponding author:
Mika Mäntylä,

Telephone: +358505771684
mika.mantyla@aalto.fi

P.O. Box 15400
FI-00076 Aalto

Finland

Preprint of paper accepted in: Information and Software Technology,
Special Issue on Human Factors in Software Development

http://www.journals.elsevier.com/information-and-software-technology/

Abstract
Context: Prior research has focused heavily on explicit defect detection, such as formal testing and reviews.

However, in reality, humans find software defects in various activities. Implicit defect detection activities, such as

preparing a product demonstration or updating a user manual, are not designed for defect detection, yet through such

activities defects are discovered. In addition, the type of documentation, and knowledge used, in defect detection is

diverse.

Objective: To understand how defect detection is affected by the perspectives of responsibility, activity, knowledge,

and document use. To provide illustrative numbers concerning the multidimensionality of defect detection in an

industrial context.

Method: The data were collected with a survey on four software development organizations in three different

companies. We designed the survey based on our prior extensive work with these companies.

Results: We found that among our subjects (n = 105), implicit defect detection made a higher contribution than

explicit defect detection in terms of found defects, 62% vs. 38%. We show that defect detection was performed by

subjects in various roles supporting the earlier reports of testing being a cross-cutting activity in software

development organizations. We found a low use of test cases (18%), but a high use of other documents in software

defect detection, and furthermore, we found that personal knowledge was applied as an oracle in defect detection

much more often than documented oracles. Finally, we recognize that contextual factors largely affect the

transferability of our results, and we provide elaborate discussion about the most important contextual factors.

Furthermore, we must be cautious as the results were obtained with a survey, and come from a small number of

organizations.

Conclusions: In this paper, we show the large impact of implicit defect detection activities in four case

organizations. Implicit defect detection has a large contribution to defect detection in practice, and can be viewed as

an extremely low-cost way of detecting defects. Thus, harnessing and supporting it better may increase quality

without increasing costs. For example, if an employee can update the user manual, and simultaneously detect defects

from the software, then the defect detection part of this activity can be seen as cost-free. Additionally, further

research is needed on how diverse types of useful documentation and knowledge can be utilized in defect detection.

Keywords: software testing, defect detection, activities, documents, human factors, industrial questionnaire study

1. Introduction
Finding defects before release is an important and costly software engineering activity that is typically achieved

through software testing and reviews. Plenty of academic work on software testing exists, but the connection

between the academic work and the realities of software industry have repeatedly been found weak [1, 2]. Even

though some researchers have studied the actual practice of software testing in the industry [3-5], the diversity of the

practice of software testing has not been addressed in academic research. Regarding software review, it has been

found that in the industry they often suffer from poor reviewer preparation [6-8] and find lower share of functional

defects than evolvability problems [6, 9], which suggest that they could be secondary to software testing in detecting

functional defects. As the diversity of various defect detection activities that might exist in the industry has not been

studied in academic research, we study in this paper the variety of roles, activities, documents, and knowledge used

by the people who detect defects in software development organizations.

In our previous case and field observation studies, we have identified the diversity of roles and activities, as well

as documentation and knowledge, that are involved in defect detection and testing [10, 11]. In this paper, we

introduce the concept of implicit defect detection and study the amount and types of both implicit and explicit defect

detection activities performed in four software development organizations. Implicit defect detection is an activity

where one assesses the quality of the product and detects defects while working toward some other primary goal.

The idea that humans can find defects while working towards some other goals has been previously investigated

[12]. Additionally, it is utilized in industrial beta testing programs [13] and in internal usage of a company’s own

software products that is called alpha testing, or dogfooding, i.e., eating your own dog food [14, 15]. Prior work has

also studied the shares of defects detected in different types of testing and reviews [16, 17]. However, to our

knowledge, prior work has not studied the relative amount between implicit and explicit defect detection in software

development organizations. For example, how many defects are found when testing the software vs. other software

development activities that are not primarily done for QA purposes?

This study uses a survey instrument to provide a picture of defect detection activities at an organizational level in

four case organizations. In this analysis, we study defect detection activity, the responsibility of individual finding

defects, the type of documentation used in defect detection and the oracle information in defect detection. This study

extends the earlier observation and case studies [10, 11] that have identified the importance of personal knowledge

in software testing, by investigating the amount and type of document and knowledge used at the organizational

level.

This paper is structured as follows. Next, we present the research methodology and the analytical framework that

we used in our analysis. In Section 3, we describe the results of the survey. In Section 4, we discuss our findings and

present the related work. Finally, in Section 5, we provide the conclusion of this work.

2. Methodology
We collected data through a survey questionnaire from four software development organizations that we know

well due to long-term research collaboration. We distributed the survey of defect detection in the development

organizations and aimed it at wide coverage of professionals working in wide variety of roles. The measured

variables are the number of found defects, document use, activities performed, personal knowledge, and

organizational responsibilities.

Next, we describe the analytical framework in Section 2.1, followed by the definition of the exact research

questions in Section 2.2. We continue with a description of the survey instrument and data collection in Section 2.3.

Section 2.4 describes the measures and the data analysis procedures in detail. We introduce the case companies and

the subjects of the survey in Section 2.5. Finally, Section 2.6 discusses the limitations of this study.

2.1. Analytical framework

The conceptual framework that we use in the analyses of the survey consists of three main dimensions

concerning the defect detection phenomenon. The central concepts in our framework are described and motivated by

the existing literature: implicit and explicit defect detection, tester and non-tester roles, and documentation and

knowledge used in defect detection.

First, we propose dividing defect detection activities into explicit and implicit defect detection (see Y-axis in

Figure 1). We define explicit defect detection as an activity whose primary goals are to find defects and assess the

quality of the product. Both goals of explicit defect detection can be achieved by various testing and review

methods. In this paper, the explicit defect detection activities are software testing and software reviews or

walkthroughs. We define implicit defect detection as an activity where one assesses the quality of the product and

finds defects while working toward some other primary goal. We argue that almost all people have performed

implicit defect detection. Implicit defect detection is very common in our lives as we form opinions and find defects

in the things that we use. For example, we have opinions about the quality of our car, our smartphone, or the school

we send our children to. Furthermore, we have probably found defects in the things that we use, and we might have

even reported these defects back to the responsible organizations. The same kind of implicit defect detection goes on

in software product companies, e.g., when a sales person creates a demonstration for the upcoming product release,

he/she is performing implicit defect detection as there is a chance that the upcoming release might still have

undiscovered defects. Implicit defect detection has also been harnessed by software companies by requiring their

employees to use the upcoming alpha versions of the products, called alpha testing or dogfooding [15]. The implicit

defect detection performed by external people is called beta testing [13]. The implicit-explicit distinction can be seen

as part of experimental designs where subjects have had multiple goals, e.g., perform pension calculation and report

data quality defects [12], and create high level test cases and find requirements defects [18]. However, in general,

the idea of implicit software defect detection has received limited attention in prior works. We think that large shares

of implicit defect detection happen in software development organizations every day, thus, the topic needs to be

addressed.

Second, we study the organizational roles of the people performing software defect detection (both implicit and

explicit). We divide the defect detection activity based on the roles tester and non-tester (see X-axis in Figure 1). In

our prior case study which was based on defect database data, we found that large shares of defects were found by

non-testers [10]. The large contribution of non-testers to defect detection might be more common than previously

thought, as further work by us [19], and independent researchers [20], has supported this finding. This paper extends

prior works by connecting the roles with different implicit and explicit, defect detection activities as illustrated by

the defect detection activity quadrants in Figure 1. In this research, we use a survey instrument to replicate and

confirm the results of earlier work that was based on database analysis [10] and interviews [19, 20].

Third, we study the documents used and knowledge applied in software defect detection. Earlier work has

indicated that documented test cases in manual testing in the software industry are often far from textbook examples

and are sporadically used [4, 10, 21-23]. Furthermore, the benefits of having pre-designed test case documentation

in manual testing in terms of defect detection effectiveness are questionable according to experiments comparing

test-case-based and exploratory testing [24, 25]. Thus, the question of what documents are used for defect detection

and testing in industry becomes of interest and is studied in this paper.

Finally, we also study the knowledge required to recognize failures in software defect detection. The important

effects of knowledge have been recognized in numerous studies [11, 22, 26-30]. For example, the researchers

conclude [26] that, “test design is to a considerable extent based on experience and experience-based testing is an

important supplementary approach to requirements-based testing”. It is good to notice that documents are, in fact,

codified forms of knowledge. The effect of expertise or knowledge to defect detection performance is identified in

other activities, such as usability reviews [29] and spreadsheet defect detection [30], in addition to software testing.

This paper extends our previous qualitative field observation study [11] with a quantitative survey data.

Figure 1. Defect detection activity quadrants. X-axis represents the role dimension and Y-axis represents the
activity dimension of software defect detection.

Table 1. Share of defects detected according to the defect detection activity quadrants (see Figure 1)

Non-tester Tester
Explicit defect detection 17% 21%
Implicit defect detection 48% 14%

2.2. Research questions

This work has four research questions that represent different dimensions of defect discovery (see Figure 2). The

research questions were motivated by the previous section.

·RQ1 Responsibilities: What are the shares of defects found by testers and non-testers and to what extent do

non-testers participate in defect detection?

·RQ2 Activities: What are the shares of defects found in explicit and implicit defect detection and what

activities contribute to implicit defect detection?

·RQ3 Documents: What are the shares of defects found with and without test cases and what other

documents are used in defect detection?

·RQ4 Knowledge: What are the shares of defects found with different test oracles?

Regarding RQ2 and RQ3, this study is exploratory and with regard to RQ1 and RQ4, this study is confirmatory

with respect to our prior work on the roles detecting defects [10] and the knowledge use in defect detection [11].

We use the term “defect” to refer to an incorrect behavior of the software system that one reports in the defect

management system. This is the term that was used in our survey, and we use it also when describing and discussing

our results.

Knowledge (RQ4)

Defect
Discovery

Responsibility (RQ1)

Document (RQ3) Activity (RQ2)

Figure 2. Dimensions of the research questions

2.3. Survey form and data collection

The data collection was made through an online survey form created with the LimeSurvey program (see

Appendix A for the complete survey). The form was administered to the employees of four organizational units (see

Section 2.5) through our company contact persons. In total, we had 105 valid answers, giving us a response rate of

38%. The response rate was high for an online survey, but it can be explained through our long term case company

collaboration. The survey had six parts that are explained below and are depicted in Figure 3.

Responsiblity (RQ1)
Defect count (RQ1-RQ4) Activity (RQ2) Documentation (RQ3)

Knowledge (RQ4) Defect reporting Other Information

Figure 3. Flow chart of the survey

First, we asked for the respondents’ main job responsibilities and the number of defects they had reported during

the past 12 months. The results regarding their main job responsibilities can be found in Table 2. The respondents

were allowed to select as many job responsibilities as needed. All respondents selected at least one responsibility.

Altogether, 188 job responsibilities were given. This meant that, on average, an individual selected 1.64

responsibilities. The frequencies show that 60 (57%) of the respondents selected one responsibility, 25 (24%)

selected two, 12 (11%) selected three, six (6%) selected four, and only two respondents (2%) selected five or more

responsibilities. In Table 2, the second column indicates how many respondents selected a particular responsibility.

The third column shows the share of the particular responsibility. The other columns identify the number of pair

combinations, e.g., the intersection between row “software testing” and column “software deployment” has the

number 3, which means that there were three individuals who selected both software testing and software

deployment as their responsibility. An illustrative example of a person with multi-role responsibility is a usability

specialist who participated in feature design and testing, but focused on the usability perspective. Only three

respondents (3%) selected “other.” We analyzed the description of these three answers and were able to re-classify

two of these three responses under our given responsibility classes. Based on this, and the low share of “other”

answers, we think that our role list provided good coverage of the responsibilities of the individuals who participated

in software defect detection.

Table 2. Survey: responsibilities of the respondents (RQ1)

R
ol

e

n Pe
rc

en
t

So
ftw

ar
e

de
sig

n
an

d
im

pl
em

en
ta

tio
n

So
ftw

ar
e

te
st

in
g

Fe
at

ur
e

sp
ec

ifi
ca

tio
n

an
d

de
si

gn

Pr
oj

ec
to

rp
ro

du
ct

m
an

ag
em

en
t

M
an

ag
in

g
an

d
le

ad
in

g
pe

op
le

C
us

to
m

er
su

pp
or

t

Pr
od

uc
tp

ac
ka

gi
ng

So
ftw

ar
e

ar
ch

ite
ct

ur
e

So
ftw

ar
e

de
pl

oy
m

en
t

C
us

to
m

er
co

ns
ul

ta
tio

n

Pr
od

uc
ts

al
es

O
th

er

Software design and
implementation

43 41.0 % - 11 8 7 6 1 0 9 4 1 0 0

Software testing 26 24.8 % 11 - 8 4 2 1 1 2 3 1 0 0
Feature specification
and design

21 20.0 % 8 8 - 7 7 1 0 2 2 1 2 0

Project or product
management

19 18.1 % 7 4 7 - 6 1 0 3 1 1 1 0

Managing and leading
people

18 17.1 % 6 2 7 6 - 2 1 1 4 0 1 0

Customer support 13 12.4 % 1 1 1 1 2 - 2 0 2 1 0 0
Product packaging 12 11.4 % 0 1 0 0 1 2 - 0 1 0 0 0
Software architecture 10 9.5 % 9 2 2 3 1 0 0 - 1 0 0 0
Software deployment 10 9.5 % 4 3 2 1 4 2 1 1 - 2 0 0
Customer consultation 5 4.8 % 1 1 1 1 0 1 0 0 2 - 2 0
Product sales 3 2.9 % 0 0 2 1 1 0 0 0 0 2 - 0
Other 1 1.0 % 0 0 0 0 0 0 0 0 0 0 0 -

Second, we asked how many percentages of defects were found in different activities in the companies. We used

our prior experience in working with these companies to construct a meaningful list of activities (see Table 3). Our

aim was to cover all activities that could reveal defects. Out of the answers, only 2.7% of the defects were detected

in activity “other.” We analyzed the textual description of the “other” answers and were able to re-classify them

according to our activity list. Thus, we think that our activity list provided a good coverage of the activities where

defects were detected.

Table 3. Survey: list of the defect detection activities in the survey (RQ2)
· Preparing for product presentation or training
· Giving product presentation or training
· Specifying or designing features
· Technical software design
· Implementing the software (programming)
· Testing the software
· Participating in product review or walkthrough
· Deploying or installing the software
· Creating or updating product documentation
· Providing helpdesk service
· Internal usage of the software product
· Other, please specify below

Third, we asked how many percentages of different material, i.e., documents, were used when the respondents

detected defects (see Table 4). Out of the answers, 4.2% of the detected defects were found with material “other.”

With the analysis of textual answers, we were able to re-classify many “other” answers, leaving us with 1.3% of the

defects detected with true “other” answers. The true “other” answers were, “asking information from colleagues,”

and, “comparing the functionality with previous version.” Thus, we think that the material list had a decent coverage

of the materials used in these companies for defect detection, but in future studies, the survey should include the true

“other” answers listed above.

Table 4. Survey: list of material that could be used in defect detection (RQ3)
· Test cases
· Release notes
· Product manual
· Product presentation or training material
· Product requirement or feature specification
· Technical product specification
· Message or report, e.g., e-mail, ticket of customer request, defect report
· I am not using any written material
· Other, please specify below

Fourth, we asked how many percentages of defects were recognized based on different knowledge types (see

Table 5). This list is based on observing knowledge use during exploratory software testing sessions [11]. For this

question, the share of defect detected with “other” knowledge type was 0.9%, but we were able to re-classify all

these answers according to our given knowledge list. Again, we think that our list of knowledge sources used for

defect detection had good coverage over all possible knowledge sources.

Table 5. Survey: list of knowledge that could be used in defect detection (RQ4)
· Obvious errors, e.g. text too big for the text field, software crash
· Understanding how the software system should work (system logic)
· In-depth understanding of the application domain and its rules
· Customers and the real usage scenarios
· Documentation indicating the correct result
· Other, please specify below

Finally, we also had questions on defect reporting. However, as the focus of this article is the defect discovery,

those results are not analyzed here. In the final page, the respondent had the possibility to give feedback in an open

text field and leave his or her email address if interested in hearing about the survey results.

2.4. Measures and data analysis

The data was analyzed with the Microsoft Excel spreadsheet tool. We normalized all responses twice. First, we

normalized all the percentage responses to 100%. This means that if the sum of the responses to a single question,

from a single respondent, was more, or less, than 100%, the responses were normalized to 100% total. We had to do

this, as our survey software did not have an applicable way to force 100%1. This normalization was also performed

for the question regarding the documents used in defect detection in order to make it more convenient for the reader

to understand the shares of the document use, even though it is quite possible to use multiple documents when

detecting a single defect. Furthermore, if multiple documents are used when detecting defects, the contribution of

each of those documents is likely to be smaller than if only one document was used. A second normalization was

performed based on the number of defects reported by the respondents. This means that the answers from those

reporting many defects have a larger weight in the results.

All research questions are operationalized with the number of defects found measure. This means that the number

of defects that can be attributed to a particular responsibility, activity, document, or knowledge. For example, if a

respondent has found 50 defects and indicates 50% defects are found with test cases and 50% are found with

requirements documents, then the number of defects found with either of these documents is 25.

2.5. Companies and respondents

We surveyed the three companies we had worked with in our previous case study of roles participating in defect

detection [10]. The labeling of the companies A, B, and C is the same as in [10]. The only difference is that for

1 The LimeSurvey has a way to force 100% sum for set of fields, but the feature did not do this automatically. Our pre-testing with survey
suggested that it might decrease response rate as the feature put extra burden for the respondents.

company B, we had two departments participating. The departments are marked as B1 and B2, whereas in our

previous work we only had data from department B1. The description of the cases (organization units) and

companies of our study is listed in Table 6, wherein we describe the contextual variables that are typically reported

and the ones that we assume to have an effect on the observed results. The affecting context variables are discussed

in more detail in Section 4.5.

Our sampling strategy aimed at getting as high a coverage as possible on the individuals reporting defects in the

case organizations. We requested a list of employees’ email addresses through our company contact persons. In

detail, the request said (translated from Finnish to English): “As respondents, we would like to have the widest

possible range of people working in different roles (developers, testers, product managers, consultants, customer

support, etc.) who find and report defects in your products. We do not want to focus only on testers as we wish to

achieve a more complete picture of how defects are detected and reported in different activities and roles.” The

company contact personnel responded with a list of email addresses, which were then inputted into a LimeSurvey

program that took care of sending invitations and reminders to the participants. Our response rate varied between

33% and 65% in the case organizations.

The distribution of respondents between our cases is unfortunately not equal (see Table 6). Case A had the fewest

responses, with only 8 responses, and case B2 had the most responses, with a total of 51 responses. However,

although case A had the lowest number of respondents (8), it also had the highest number of defects reported per

respondent on average (61), and while case B2 had the highest number of respondents (51), it also had the lowest

average of defects found per respondent (36). This means that for cases where a lower number of responses were

received, the responses came from more active individuals in terms of defect detection. Based on our prior analysis

of the company defect databases, the distribution of defect reporting in these companies is power-law distributed—

roughly 65% of defects were found by 20% of the individuals reporting defects. Thus, getting responses from the

more active defect reporters was important when having a smaller sample.

Table 6. Organizational units of our case study and number of respondents
Companies A B C
Cases
(organizational
unit)

A B1 B2 C

Personnel

> 110 employees > 80 in the studied
division (> 300 in the
whole company)

240 in the studied
division (> 300 in the
whole company)

> 70 in the
studied divisions
(> 100 in the
whole company)

Customers > 200 > 80 > 1000 > 300
Company age > 10 years > 20 years > 20 years > 20 years

Studied product

Single product
Business software of
specific industry
Integrated directly
into the customers’
other business
systems
Many customization
opportunities

Two products for
engineering in
different fields
The products share a
common
technological core
architecture
Integrated directly
into the customers’
other systems

Single product for
engineering design
COTS type of
software (i.e., not
heavily integrated or
customized)

Single product for
engineering design
Product has a
separate core that is
also used for another
product
COTS type of
software (i.e., not
heavily integrated or
customized)

Release process

Internal monthly
mainline release
Majority of software
development done in
customer branch and
later imported back
to mainline
Projects encouraged
to frequently update
to the latest mainline
release

External main release
two times a year
External minor
release four times a
year
Majority of software
development
conducted in main
branch

External main release
once a year
Majority of software
development
conducted in main
branch

External main release
once a year
External minor
release once a year
Majority of software
development done in
main branch

Type of GUI WIMP WIMP + complex 3D
modeling

WIMP + complex 3D
modeling

WIMP + complex 3D
modeling

Main model of
organizing testing

Mainline testing by
testing team
Projects responsible
customer specific
testing

Team effort Team effort +
Supported by testing
team

Team effort

Separate testing
organization

Separate testing team None Separate testing team None

Response % –
N responses –
Sum of defects –
Avg. number of
defects

38% – 8 – 488 – 61 43% – 36 – 1541 –
43

33% – 51 – 1844 –
36

65% – 11 – 599 – 54

2.6. Limitations

The main limitations of our results come from the small set of organizations and the limited number of

respondents studied. Thus, we cannot claim representativeness and we must be cautions in making statements about

generalizability, as we do not know what the shares of, e.g., implicit defect detection, would be in a larger set of

companies. However, the small set of companies is also a strength, as we know these companies well from the prior

studies, e.g., [10, 31-33], which enabled us to construct a meaningful survey and especially helped us interpret the

open text answers. Our goal was not a statistical generalizability, but instead, a more restricted survey in a known

context, where the interpretations of the results would be more reliable. One way to assess generalizability is

through discussion of what are the most important context variables affecting the results, and we do this in Section

4.5. We think that this discussion of the context opens up new avenues for future studies. Next, we discuss the

limitations in more detail.

Our results are affected by the survey sample. We asked, and received, a list of defect reporters from the case

organization’s contact person (see Section 2.5). Thus, the base sample should be representative of the defect

reporters in the case organizations. However, our true sample is formed from the individuals who responded to the

survey. Thus, it is likely that our results have a small variation from what the situation really is within the

companies. Importantly, the conclusions of this study are not affected by this, as our conclusions would be the same

even if we would base them on any single case (A, B1, B2, or C), as seen in Table 7. It is highly unlikely that all

companies would have had such a highly skewed set of respondents, causing our overall conclusions to be different.

Our results are based on the respondents’ recollection of their past behavior and their personal understanding

about their role and main responsibilities, and these can be seen as a limitation. Thus, the measures we provide are

illustrative only. Probably the respondents were able to refer the actual defect database regarding the total number of

reported defects and other details to support their responses. However, it is likely that the respondents could not give

fully accurate answers to the questions requiring recollection, e.g., during which activities, and based on what

documentation, the defects were found.

The survey instrument itself may represent a threat to validity. For example, only two activities out of 12

represented explicit defect detection, and 9 activities represented implicit defect detection, and the other option in

addition. Setting up response options this way may attract more responses from uncertain subjects to implicit testing

activities, as they represent 75% of the items. However, we believe that the activity list represents the true variety or

activities that take place in software development organizations. We wanted to have high level activities, e.g., testing

and programming, and splitting testing between unit, integration, and system testing would have over-represented

the testing activity in comparison to other activities. Thus, it might have biased the results in favor of explicit

testing. Overall, it is difficult to say what kind of question setup should have been used to get the most realistic view

of the true distributions. However, we think that our high-level conclusions would be the same regardless of the

questions set up.

The time used for different activities was not collected in our survey and was also not available in the company

time reporting systems, as they were used to track the billing of the work rather than the activity of the work. Thus,

in the future studies, estimates of the spent effort should also be collected. However, based on the long

collaborations with the companies, we estimate that implicit defect detection has a higher volume than explicit

defect detection activities.

Overall, the limitations of this work mean that our data describes the defect detection phenomena, and how the

different roles and activities contribute to the defect detection, but our data cannot be used to claim exact

percentages of defects found by people working in certain roles in organizations. However, there was no better way

of collecting such data. In our previous work [10], we learned that the defect databases in the companies rarely

contained information that could be reliably used to answer our research questions. For example, some people would

sometimes indicate the defect detection activity, but overall the activity field was too unreliable for analysis.

Similarly, our previous work only used one role for each person, when in fact many people in the companies had

multiple roles and responsibilities. Thus, the survey was created to fix these shortcomings of our prior work [10].

3. Results
In this section, we present the results of the study by looking at our four research questions addressing

responsibilities (RQ1), activities (RQ2), documents (RQ3), and knowledge (RQ4) of defect detection in Sections

3.1, 3.2, 3.3, and 3.4, respectively. Table 7 presents a coarse-grained summary of the results for all the research

questions, while the upcoming sections (3.1-3.4) provide a more detailed analysis of each of the research questions.

In Table 7, we see that in our survey data, individuals with tester responsibility detected 35% of the defects

varying from 23% to 54% between the cases. When looking at the activities where the defects are found, we see

similar shares with explicit defect detection activities finding 38% of the defects and the share ranging from 34% to

61% between companies. However, this does not mean that testers only find defects through explicit defect

detection, as we describe in Section 3.2. Regarding the document use, we found that the test cases were used for

detecting 18% of defects, while the role of other documents in defect detection was 66%. The role of other

documents than test cases in defect detection was also stable ranging from 63% to 73%. Finally, when looking at the

oracle information used for recognizing defects, the general & system knowledge was the most frequently used, with

a 55% share, and domain knowledge also had a high share with 37%. Furthermore, documents rarely acted as test

oracles in our cases, with only 7% share of the detected defects. For Table 7, the survey item options are classified

as follows:

· RQ1 Responsibility: Share of Testers’ defects come from all individuals who have selected “Software Testing”

as their responsibility, regardless of what other responsibilities they have selected. Non-testers are everyone else

who have not selected tester responsibility (see Table 2 and Table 8 for details).

· RQ2 Activity: Explicit defect detection is the share of defects from the item options, “Testing the software” or

“Participating in product review or walkthrough.” All other activities are classified as implicit defect detection

(see Table 3 and Table 9 for details).

· RQ3 Documents: Test case is the share of defects found with the item option “Test Cases.” “No document” is

the share of defects found with the item option, “I am not using any written material.” “Other document”

includes all other documents used for defect detection (see Table 4 and Table 11 for details).

· RQ4 Knowledge: General & System knowledge is the share of defects found with the item options “obvious

errors, e.g., text too big for the text field, software crash,” and, “understanding how the software system should

work.” Domain knowledge is the share of defects found with the item options, “in-depth understanding of the

application domain and its rules,” or, “customers and the real usage scenarios.” Finally, Document contains the

share of the item option, “documentation indicating the correct result.”

·

Table 7. Share of defects detected
Research questions Coarse-grained categorizations Total Cases

A B1 B2 C

RQ1: Responsibility
Tester 35% 54% 46% 23% 28%
Non-tester 65% 46% 54% 77% 72%

RQ2: Activity
Explicit defect detection 38% 61% 35% 34% 42%
Implicit defect detection 62% 39% 65% 66% 58%

RQ3: Documents
Test case 18% 37% 19% 12% 19%
Other document 66% 63% 66% 65% 73%
No document 16% 0% 15% 22% 8%

RQ4: Knowledge
General & System knowledge 55% 43% 54% 61% 54%
Domain knowledge 37% 48% 39% 33% 39%
Document 7% 9% 7% 7% 7%

3.1. Responsibilities

Table 2 shows the distribution of work responsibilities of the respondents. The table also shows that each

individual could have more than one responsibility. In Table 8, we see that software developers had the highest

defect counts with 39% total share and software testers had the second largest share with 35%. When we analyze the

average number of defects found per individual, we found that customer support found the largest share, 61.0

defects per individual respondent, followed by software testers, with an average of 60.3 defects. Software developers

represented the largest group of respondents, thus, their total defect share was the largest even when their average

number of defects (40.1) was below the overall average (42.4). Altogether, several roles contributed to the reporting

of defects. The importance of roles varied, depending on whether we measured sum of contributions, or average

contribution per individual. Software testers were ranked second highest, both in terms of average defects per

individual and total share. To summarize, the testers’ contributions were 35% of the defects, whereas non-testers’

contributions were 65% (see Figure 1 and Table 1).

Table 8. Defect shares for work responsibilities
Responsibility N Total

defects
Total
share

Average
defects

Software testing (= testers) 26 1567 34.8 % 60.3
Product sales 3 122 2.7 % 40.7
Customer consultation 5 102 2.3 % 20.4
Project or product management 19 834 18.5 % 43.9
Feature specification and design 21 1091 24.3 % 52.0
Software architecture 10 373 8.3 % 37.3
Software design and implementation 43 1725 38.4 % 40.1
Software deployment 10 337 7.5 % 33.7
Product packaging 10 234 5.2 % 23.4
Customer support 13 793 17.6 % 61.0
Managing and leading people 18 607 13.5 % 33.7
Other, please specify below 1 1 0.0 % 1.0
All1

1051 44971 -1 42.8
1 This cell is not the sum since a respondent could select more than one role

Calculation of the results in Table 8:
N = number of respondents selecting the responsibility
Total defects = sum of respondent’s total defects that have selected the responsibility
Total share = total defects for the responsibility / all reported defects (4497)
Average defects = total defects for the responsibility / number of respondents reported the responsibility

3.2. Activities

The list of activities, during which defects were revealed, is shown in Table 9. Software testing was the leading

activity for software defect detection from three viewpoints: First, the largest number of individuals, 81 (77%), had

performed software testing activity to find defects; Second, software testing found the most defects in total, with a

share of roughly one-third; and third, the average number of defects per individual was the highest for software

testing. Although software testing is the most prominent activity in software defect detection, the share of one-third

means that it is not a dominant activity, as other activities are responsible for finding two-thirds of the defects. Other

prominent activities are software implementation with 17%, helpdesk with 12%, and internal usage with 10% share

of the defects found. Review use in the companies appears to be sporadic, and the share of defects found with

review is low at only 3.7%. Connecting the results of this section to the Y-axis in Figure 1, which illustrates the

distinction between explicit and implicit defect detection, allows us to state that explicit defect detection found 38%

of the defects, while implicit defect detection found 62% of the defects.

Table 9. Defect shares for work activities
Activity N Total defects Total

share
Average
defects

Testing the software (= explicit defect detection) 81 1537 34.5 % 19.0
Product review or walkthrough (= explicit defect
detection) 25 164 3.7 % 6.6
Preparing for product presentation or training 33 182 4.1 % 5.5
Giving product presentation or training 22 102 2.3 % 4.6
Specifying or designing features 44 331 7.4 % 7.5
Technical software design 29 165 3.7 % 5.7
Implementing the software (programming) 50 776 17.4 % 15.5
Deploying or installing the software 30 115 2.6 % 3.8
Creating or updating product documentation 22 104 2.3 % 4.7
Providing helpdesk service 34 546 12.3 % 16.1
Internal usage of the software product 56 434 9.7 % 7.8
All activities (sum) 426 44571 100% 10.5

1This number deviates between tables because not all respondents responded to all questions

Calculation of the results in Table 9:
N = number of respondents selecting the activity
Total defects = sum of respondents’ share of defects for the activity
Total share = total defects for the activity / all reported defects (4457)
Average defects = total defects for the activity / number of respondents reported the activity

Table 10 shows the cross-tabulation of the activities and responsibilities. The table shows how responsibilities

and activities are interconnected in terms of defect detection. For example, if we pick software testing responsibility

(row) and testing-the-software activity (column), we find the number 55%. This means that people who have

software testing as one of their responsibilities found 55% of the total count of the defects while testing the software.

When we look at the activities alongside the respondents’ responsibility, we see that all roles actually find defects

through several activities. For example, customer support people found 52% of defects when providing help desk

service, and customer consultation found 31% of defects when preparing for and 22% when giving product

presentations or trainings. Additionally, we can see that all roles also contribute to the activity of testing the

software. This highlights the cross-cutting role of software testing activity.

Table 10. Cross-tabulation of the defect shares for work responsibilities and activities
Responsibilities Activities

Pr
ep

ar
in

g
fo

rp
ro

du
ct

pr
es

en
ta

tio
n

or
tra

in
in

g

G
iv

in
g

pr
od

uc
tp

re
se

nt
at

io
n

or
tra

in
in

g

Sp
ec

ify
in

g
or

de
sig

ni
ng

fe
at

ur
es

Te
ch

ni
ca

ls
of

tw
ar

e
de

sig
n

Im
pl

em
en

tin
g

th
e

so
ftw

ar
e

(p
ro

gr
am

m
in

g)

T
es

tin
g

th
es

of
tw

ar
e

Pr
od

uc
tr

ev
ie

w
or

w
al

kt
hr

ou
gh

D
ep

lo
yi

ng
or

in
sta

lli
ng

th
es

of
tw

ar
e

C
re

at
in

g
or

up
da

tin
g

pr
od

uc
td

oc
um

en
ta

tio
n

Pr
ov

id
in

g
he

lp
de

sk
se

rv
ic

e

In
te

rn
al

us
ag

eo
ft

he
so

ftw
ar

e
pr

od
uc

t

Product sales 30.6 % 19.4 % 6.8 % 0.0 % 0.0 % 29.3 % 0.0 % 2.5 % 0.0 % 4.7 % 6.7 %

Customer consultation 30.6 % 21.8 % 0.6 % 0.0 % 1.6 % 14.7 % 3.5 % 9.4 % 0.0 % 9.6 % 8.2 %
Project or product management 9.4 % 5.0 % 9.4 % 2.5 % 7.7 % 43.2 % 3.4 % 2.0 % 0.8 % 4.5 % 12.0 %
Feature specification and design 6.9 % 4.3 % 13.1 % 2.5 % 17.3 % 31.6 % 5.7 % 0.5 % 1.2 % 3.7 % 13.1 %

Software architecture 6.3 % 6.5 % 7.0 % 11.3 % 34.5 % 20.9 % 5.0 % 0.2 % 0.0 % 4.6 % 3.8 %
Software design and implementation 3.4 % 2.6 % 7.5 % 7.0 % 38.1 % 25.2 % 3.2 % 1.4 % 0.6 % 3.0 % 8.0 %

Software testing 2.4 % 1.1 % 7.0 % 2.6 % 14.7 % 55.2 % 5.6 % 1.2 % 1.4 % 2.2 % 6.7 %
Software deployment 0.5 % 2.0 % 5.2 % 7.7 % 32.6 % 16.3 % 3.7 % 9.9 % 0.0 % 9.2 % 12.9 %
Product packaging 0.0 % 2.1 % 1.3 % 1.3 % 6.4 % 23.3 % 0.0 % 5.3 % 21.9 % 30.7 % 7.7 %
Customer support 1.2 % 1.8 % 3.0 % 1.2 % 7.4 % 14.9 % 0.5 % 3.7 % 2.9 % 51.5 % 11.9 %

Managing and leading people 4.5 % 2.8 % 7.4 % 3.3 % 14.8 % 34.1 % 4.3 % 4.9 % 0.0 % 8.6 % 15.4 %

Total Share 4.1 % 2.3 % 7.4 % 3.7 % 17.4 % 34.5 % 3.7 % 2.6 % 2.3 % 12.3 % 9.7 %

Calculation of the results in Table 10:
The percentages are counted as the total share column in Table 9. Table 10 extends Table 9 by providing activity
shares for each responsibility. Each percentage shows the share of defects found in each activity, e.g., the total share
of the testing activity is 34.5%, but for respondents selecting testing responsibility, it accounts for 55.2%. The rows
add up to 100%. The percentage is accounted for by taking each responsibility and computing what percent of their
defects can be accounted to a particular activity.

3.3. Documents

We investigated the role that documentation played when detecting defects. The data on document use in defect

detection is presented in Table 11. The most frequently used document in defect detection depends on the viewpoint:

the number of individuals using the document, the total number of defects detected using the document, or an

average number of defects detected per individual using the document. First, product requirements or specifications

are used by the highest number of individuals, 66 (64%). Second, the total number of detected defects is the highest

using message or report type of document, 969, followed by test cases and requirements, 804 and 711 defects

detected, respectively. The large number of defects found with message or report type of documentation can partly

be explained by the wide scope of documents that can be interpreted for inclusion in this group. Third, if we look

into the average number of defects detected per individual using a document, we see that not having any written

material has the highest average with 18.6 defects, followed by the message or report type of document and test

cases—15.9 and 13.9 defects found on average, respectively (note: other material actually has the highest average,

but since there are only two respondents, it is ignored). The survey results in Table 11 challenge the dominant role

of test cases in software defect detection and highlights several sources and varieties of documented knowledge.

Table 11. Defect shares for document usage
Document N Total defects Total share Average

defects
Test cases 58 804 18.2 % 13.9
Release notes 31 206 4.7 % 6.7
Product manual 54 507 11.4 % 9.4
Product presentation or training material 29 138 3.1 % 4.7
Product requirement or feature specifications 66 711 16.1 % 10.8
Technical product specification 42 351 7.9 % 8.4
Message or report, e.g., e-mail, ticket of customer
request, defect report 61 969 21.9 % 15.9
I am not using any written material 37 685 15.5 % 18.5
Other, please specify below 2 56 1.3 % 27.8
All documents 380 4427 100 % 11.7
Calculation of the results in Table 11:
N = number of respondents selecting the document
Total defects = sum of respondents’ share of defects for the document
Total share = total defects for the document / all reported defects (4427)
Average defects = total defects for the document / number of respondents reported the document

There were large differences in the use of documentation regarding different responsibilities in Table 12. Test

cases were most frequently used by product packaging (30%), software testers (29%), and by software

implementation (18%). Test cases were rarely used by product sales (8%), customer consultation (3%), and

customer support responsibilities (7%). People with these responsibilities relied more on documented release notes

and the product manual when detecting defects. This is not surprising as those people often interact with customers

and, thus, work with and are interested in the documentation that is visible to the customer. Release notes (10%) and

product manuals (18%) were also frequently used by people with product packaging responsibilities, who also work

with such documents. Product presentation and training materials had the highest shares among sales people (18%),

while other responsibilities had a negligible share. Requirement specifications were most frequently used by

software deployment (22%), software architecture (22%), and project and product manager responsibilities (19%).

Product requirements were seldom used by customer consultants (6%) and managers (9%).

Technical product specification was most frequently used by people working on software deployment who also

used a lot of requirements documentation. It seems that people responsible for deployments found defects by

studying the requirements from a technical viewpoint. They are the people responsible for the system setup on the

customer site, and they want to make sure that the product installation runs technically smoothly when they install

the product to the customer site.

Customer support people used messages or reports frequently (38%). They often get such messages from

customers in the form of, for example, complaints, questions, or a defect report. In addition, people with

management and leadership responsibilities often found defects while using such messages (38%). Finding defects

without any type of documentation was most frequent in product sales (40%), customer consultation (38%),

software architecture (30%), and managing and leading (25%). We think that people with these responsibilities

possess strong personal knowledge of the product and prefer relying on their experience, rather than written

documentation, when detecting defects.

Table 12. Cross-tabulation of the defect shares for work responsibilities and used documents
Responsibility

Te
st

ca
se

s

R
el

ea
se

no
te

s

Pr
od

uc
tm

an
ua

l

Pr
od

uc
tp

re
se

nt
at

io
n

or
tra

in
in

g
m

at
er

ia
l

Pr
od

uc
t

re
qu

ire
m

en
t

or
fe

at
ur

e
sp

ec
ifi

ca
tio

ns

Te
ch

ni
ca

lp
ro

du
ct

sp
ec

ifi
ca

tio
n

M
es

sa
ge

or
re

po
rt,

e.g
.,

e-
m

ai
l,

tic
ke

to
f

cu
sto

m
er

re
qu

es
t,

de
fe

ct
re

po
rt

Ia
m

no
tu

sin
g

an
y

w
rit

te
n

m
at

er
ia

l

O
th

er
,p

le
as

e
sp

ec
ify

be
lo

w

Product sales 7.9 % 1.6 % 13.9 % 17.5 % 13.2 % 0.0 % 6.3 % 39.5 % 0.0 %
Customer consultation 3.1 % 6.9 % 16.6 % 4.3 % 5.9 % 2.4 % 18.3 % 42.5 % 0.0 %

Project or product management 11.3 % 4.7 % 8.6 % 4.6 % 19.2 % 8.2 % 32.0 % 11.3 % 0.0 %
Feature specification and design 11.5 % 0.6 % 9.6 % 3.0 % 19.1 % 4.8 % 28.6 % 22.4 % 0.5 %
Software architecture 6.5 % 1.9 % 0.7 % 1.0 % 21.6 % 13.0 % 24.4 % 30.9 % 0.0 %

Software design and implementation 18.4 % 3.6 % 9.3 % 2.4 % 16.0 % 9.9 % 17.8 % 19.7 % 2.9 %
Software testing 28.6 % 1.1 % 12.1 % 3.1 % 20.4 % 9.9 % 11.0 % 13.8 % 0.0 %
Software deployment 5.1 % 4.4 % 5.2 % 0.8 % 21.2 % 22.5 % 16.5 % 24.3 % 0.0 %
Product packaging 24.0 % 6.1 % 28.8 % 2.9 % 5.6 % 0.7 % 26.3 % 5.7 % 0.0 %
Customer support 6.7 % 9.9 % 19.1 % 4.6 % 11.0 % 5.0 % 37.5 % 6.3 % 0.0 %
Managing and leading people 15.1 % 2.7 % 3.4 % 3.6 % 8.8 % 4.4 % 36.1 % 26.0 % 0.0 %

Other, please specify below 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100.0 % 0.0 %
All 18.2 % 4.7 % 11.4 % 3.1 % 16.1 % 7.9 % 21.9 % 15.5 % 1.3 %

Calculation of the results in Table 12:
The percentages are counted as the total share column in Table 11. Table 12 extends Table 11 by providing
document shares for each responsibility. Each percentage shows the share of defects found using each document,
e.g., the total share of the test cases is 18.2%, but for respondents selecting testing responsibility it accounts for
28.6%. The rows add up to 100%.
The percentage is counted by taking each responsibility and computing what percent of their defects can be
accounted to a particular document.

3.4. Knowledge as oracle

Our previous work had shown that the tester’s personal knowledge could be a significant factor when recognizing

software defects [11, 22, 34]. We investigated knowledge usage as a defect detection oracle with previously created

knowledge classification. We compared the personal knowledge use with codified knowledge, i.e., documentation

indicating the correct results. Our knowledge classification had three levels: 1) generic correctness (in Table 13, as,

“obvious errors…”); 2) system knowledge (means knowledge of the features and technical details of the tested

software system—in Table 13 as, “understanding how the software system should work…”); 3) domain knowledge

(in Table 13 as, “customer and real usage scenarios,” and, “in-depth understanding of the domain rules”). We also

acknowledge that defects can be found when comparing the output with, “documentation indicating the correct

result” (see Table 13).

Table 13 shows the type of knowledge used for detecting defects. Most frequently, defects were detected with

generic correctness, i.e., obvious errors requiring the lowest level of knowledge. It was used by 96 (93%) of the

respondents and the total share of defects detected by generic knowledge (28%) was also the highest. The second

frequent knowledge type was system knowledge used by 88 (85%) of the respondents and it also had the second

highest share of defects. Additionally, it had the highest average of defects found (13.9) among our respondents.

Customers and real usage scenarios was the third frequently used knowledge type, 77 (75%) of the respondents. It

was followed by an in-depth understanding of a domain knowledge type that was used by 61 (59%) of the

respondents. Finally, using documentation that provided the correct result was only used by 48 (47%) respondents

and the average number of defects detected with that method was only 6.7, compared to the overall average of 12.1.

Table 13. Defect shares for knowledge usage
Knowledge type N Total

defects
Total
share

Average
defects

Obvious errors, e.g., text too big for the text field, software crash 96 1268 28.4 % 13.2
Understanding how the software system should work (system
logic)

88 1222 27.3 % 13.9

In-depth understanding of the application domain and its rules 61 706 15.8 % 11.6
Customers and the real usage scenarios 77 953 21.3 % 12.4
Documentation indicating the correct result 48 323 7.2 % 6.7
All 370 4472 12.1
Calculation of the results in Table 13:
N = number of respondents selecting the knowledge type
Total defects = sum of respondents’ share of defects for the knowledge type
Total share = total defects for the knowledge type / all reported defects (4472)
Average defects = total defects for the knowledge type / number of respondents reported the knowledge type

Table 14 shows how the knowledge was distributed to different responsibilities. All responsibilities had

considerable shares of generic knowledge and system knowledge types. Respondents with customer consultation

and customer support responsibilities had the lowest share of obvious defects—only 9% and 19% shares,

respectively. The system knowledge was the most prominent knowledge type for software architects (47%) and least

prominent for software testers (21%). Knowledge of customers and real usage scenarios was most frequently used

by people with close customer contact, i.e., customer support and consultants who had 36% and 31% shares,

respectively and it was least frequently used by software architects (9%) and developers (13%). On the other hand,

in-depth understanding of the domain was used most frequently by software architects (22%) and developers (20%),

whereas being infrequently used by customer support (6%) and product packaging (8%). Documentation was used

to recognize small share of defects (7%) overall. However, it was more frequently used by the people working with

product packing or customer support responsibilities, who detected 22% and 14% of the defects based on

documentation, respectively.

Overall, the differences between responsibilities were what one would intuitively expect. However, the diversity

in the types of knowledge across responsibilities was smaller than we initially anticipated. For example, for in-depth

domain knowledge, 8 out of the 11 responsibilities are between 15 and 22 percent.

Table 14. Cross-tabulation of the defect shares for work responsibilities and knowledge types

n To
ta

ld
ef

ec
ts

fo
un

d

O
bv

io
us

er
ro

rs
,e

.g
.t

ex
tt

oo
bi

g
fo

r
th

et
ex

tf
ie

ld
,s

of
tw

ar
e

cr
as

h

U
nd

er
sta

nd
in

g
ho

w
th

e
so

ftw
ar

e
sy

ste
m

sh
ou

ld
w

or
k

(s
ys

te
m

lo
gi

c)

In
-d

ep
th

un
de

rs
ta

nd
in

g
of

th
e

ap
pl

ic
at

io
n

do
m

ain
an

d
its

ru
le

s

C
us

to
m

er
sa

nd
th

e
re

al
us

ag
e

sc
en

ar
io

s

D
oc

um
en

ta
tio

n
in

di
ca

tin
g

th
e

co
rre

ct
re

su
lt

O
th

er
,p

le
as

e
sp

ec
ify

be
lo

w

Product sales 3 122 34.5 % 28.2 % 11.6 % 18.9 % 6.8 % 0.0 %
Customer consultation 5 102 9.3 % 36.2 % 16.2 % 35.7 % 2.5 % 0.0 %
Project or product management 19 824 27.9 % 30.1 % 18.6 % 19.0 % 4.4 % 0.0 %

Feature specification and design 21 1091 29.7 % 24.8 % 15.3 % 25.2 % 5.1 % 0.0 %
Software architecture 9 358 21.1 % 46.6 % 21.8 % 8.8 % 1.7 % 0.0 %

Software design and
implementation

42 1710 28.5 % 33.9 % 19.6 % 13.0 % 5.0 % 0.0 %

Software testing 28 1567 33.1 % 21.6 % 16.9 % 19.6 % 8.7 % 0.0 %
Software deployment 10 337 26.1 % 36.9 % 15.6 % 19.4 % 1.9 % 0.0 %
Product packaging 13 234 24.4 % 26.5 % 8.3 % 18.7 % 22.1 % 0.0 %
Customer support 14 793 18.9 % 29.4 % 6.4 % 31.2 % 14.0 % 0.0 %
Managing and leading people 18 607 34.4 % 24.3 % 15.5 % 23.3 % 2.6 % 0.0 %
Other, please specify below 1 1 58.3 % 41.7 % 0.0 % 0.0 % 0.0 % 0.0 %

All 103 4472 28.4 % 27.3 % 15.8 % 21.3 % 7.2 % 0.0 %

4. Discussion and Related Work
We structure the discussion according to the four research questions, presented in Section 2.2, and discuss our

findings in relation to earlier research. Finally, in the last subsection we discuss the effects of the context of this

study and the generalizability of our results.

4.1. RQ1 Responsibilities

The first research question was: “What are the shares of defects found by testers and non-testers and to what

extent non-testers participate in defect detection?”

We found that the share of defects detected by the testers in this study was roughly 35% and for the non-testers

the share was 65% (see Table 7). In this study, the testers included all respondents that had selected “Software

Testing” as their responsibility, while non-testers are all others. This result, acquired through the survey, confirms

our prior findings [10] on the large contribution of non-testers in defect detection. In [10], the share of defects found

by testers was only 10% in three of the four cases studied in this paper based on the defect database data, whereas in

this work, we found a share of 35%. The explanation for the large difference is individuals having multiple roles in

the companies. In our prior work, we used the single role that we found in the organizational charts of the companies

for each employee. In reality, the individuals had multiple responsibilities, e.g., a person responsible for product

documentation could also have the responsibility for software testing. In this paper, the respondents were allowed to

select multiple responsibilities. Therefore, this paper represents the upper boundary of testers in the cases.

In other works, the amount of testing work done by non-testers has been investigated. Recently, Mahmud et al.

[20] found that at IBM, testing is also done by non-testers. They developed a test automation tool that was

particularly helpful for the non-testers, as it worked with a capture replay approach while producing high-level test

code that could be edited, even with individuals with limited technical skills. Thus, they present a tool approach on

how non-testers can be made more productive. In a case study of software testing in the automotive industry, it was

found that dedicated human resources for software testing were often lacking, leaving testing as everyone’s and,

thus, no-one’s, job [19]. Rooksby et al. [23] point out that testing is cooperative work by qualitatively describing

testing activities at four software development sites where testing was done by programmers, proxy customers, and

testers. However, that paper is more focused on the other social dimensions in general rather than roles and no

quantitative data of the defect detection is given. In this paper, we can see the large share of non-tester contributions

to defect detection activity in Table 10.

To summarize, the main conclusions of this and prior works [10, 19, 20, 23] are the same: defect detection is a

cross-cutting activity involving multiple roles, either due to resource constraints [19] or by design [10].

4.2. RQ2 Activities

The second research question was: “What are the shares of defects found in explicit and implicit defect detection

and what activities are part of implicit defect detection?”

In Section 1, we defined explicit software defect detection as an activity whose primary goal is to find defects

and assess the quality of the product, i.e., software testing and reviews. We defined implicit defect detection as an

activity when one assesses the quality of the product and finds defects while working toward some other primary

goal. Our results indicated that implicit defect detection activities revealed more defects than explicit ones. This may

be due to the higher number of hours used in implicit defect detection. Table 7 shows that explicit defect detection

(software testing or reviews) found 38% of the defects, while implicit defect detection (all other activities) found

62% of the defects.

When looking inside explicit defect detection, we find that testing found almost ten times more defects as

compared with reviews. Our knowledge from our long collaboration with companies indicates that they performed

reviews, but the practice was sporadic and done perhaps more for knowledge distribution benefits rather than defect

detection. Similar findings can be found from an international industrial survey with 226 respondents [8] that

indicated that reviews are unsystematically applied in the industry. Our findings support those results. A case study

illustrating why reviews might fail in industry [35] suggests that reviews require extensive enforcing and are, thus,

dependent on the enthusiasm of the review champion, which may fluctuate over time. However, we do not know

whether there is a connection between the low defect detection share of reviews and the high defect detection share

of implicit defect detection activities. Nevertheless, our findings mean that implicit defect detection is a highly

important quality assurance practice in the studied companies. Yet, it seems that very little prior work of the implicit

vs. explicit distinction of defect detection exists. Next, we discuss the relevant prior work and Table 15 provides a

summary of the existing knowledge.

Robillard and Francois-Brosseau [36] highlight the importance of explicit defect detection (testing activity only

in their case) in a small industrial study. They found that when software developers were required to make testing

activities explicit, it resulted in big improvements in product quality. The idea was to make developers aware of the

goal of the testing, instead of seeing it as an obstacle preventing them to complete a task. On the other hand, having

more explicit defect detection activities would increase the total effort, as compared with implicit defect detection as

part of another task, e.g., designing new features or preparing for product demonstrations.

We were able to find two works that have, in fact, studied implicit defect detection in the areas of software

inspections [18] and data quality checking [12]. Fogelström and Gorschek [18] propose a reading technique called

test-case-driven inspection that is based on perspective-based reading [37]. In test-case-driven inspection, the testers

inspect requirements while creating high-level test cases based on the requirements. Although original authors make

no such claim, we think that the test-case-driven inspection can be interpreted as an implicit inspection when

creating the test cases is the primary goal. The authors also show, with a controlled experiment, that test-case-driven

inspection finds the same number of defects in total, but finds more major defects than checklist-based reading.

Klein et al. [12] studied the effect of defect detection goal settings and incentives from data when the subjects

worked on pension calculation tasks. The study shows that if the defect detection goal was vaguely described in the

instructions, the subjects detected only 7% of the defects. When the defect detection goal was stated clearly, the

subjects detected 31% of the defects. Finally, when a monetary incentive was added for finding the defects, then the

subjects found 56% of the defects. Their results suggest that making the defect detection goal explicit can improve

the defect rate in the case of implicit defect detection activity and increasing the incentives further improves the

defect detection results. Thus, making the defect detection goals explicit for the implicit defect detection activities

can be a cost-effective approach for improving the defect detection results in software development organizations.

Alpha testing or dogfooding [15] and beta testing are defect detection activities where several people use a new

version of the product before it is released to the market. These activities utilize implicit defect detection at an

individual level to find defects, but at the company level, such activities are in fact explicit defect detection. For

example, companies have beta-testing programs and strategies [13], highlighting the explicit nature of these

activities. At the individual level, the defect detection is implicit as the individuals are using the product for primary

goals other than defect detection and quality evaluation. Despite the apparent wide usage of alpha and beta testing

and a large number of articles that mention such testing, we are only aware of one research article that has a primary

focus on this practice [13]. As that article is soon twenty years old, this is an important avenue for future research.

To summarize, implicit defect detection activities seem to be commonplace in the industry. However, it seems

that prior work on the topic is scattered and systematic literature reviews of this topic are likely to be difficult when

common vocabulary is missing. The existing research [12, 18] shows that humans can detect defects while

simultaneously performing other tasks like calculating pensions or creating test cases. The primary task in implicit

defect detection does not necessarily impair the defect detection performance in comparison to an explicit defect

detection task, but can result in a similar performance [18]. However, neither of those studies [12, 18] reports the

quality level of the main tasks (test cases produced or pension calculation performed). Perhaps the increased focus

on the defect detection goal decreases the quality of the output of the second task. Finally, implicit defect detection

can be improved by making the defect detection goal more prominent and by offering rewards for finding defects

[12].

We conclude that, as the contribution of implicit defect detection activities is high, it can be beneficial to

explicate the defect detection goals of the implicit defect detection tasks. We also highlight that the explicit-implicit

dimension of defect detection activity is actually a continuum where the focus on the defect detection task can vary

from highly explicit to very implicit (see Y-axis in Figure 1).

Table 15. Existing knowledge of implicit defect detection activities
Knowledge Source

Humans are able to find a good share of defects when performing other tasks. This paper and
[12, 18]

Making defect detection and testing more explicit, even within the implicit activity, increases the
share of defects detected.

[12, 36]

Implicit defect detection through various activities is a highly important quality assurance
method in certain industrial contexts.

This paper

Alpha testing or dogfooding and beta testing represent perhaps the most institutionalized and
widely spread implicit defect detection activities.

[13-15]

The defect detection done when additionally performing other tasks is more effective in finding
major defects, than defect detection activity alone.

[18]

4.3. RQ3 Documents

The third research question was: “What are the shares of defects found with and without test cases and what other

document are used in software defect detection?”

In this study, test cases were the second most frequently used document for defect detection, with 18% share,

whereas the most frequently used document type was a message or report (22%) (see Table 11 and Table 7). This

means that when studying defect detection activities and especially manual testing, researchers should also consider

other documents and written information sources in addition to test cases. Testing with the help of product

requirements (16%), product manual (11%), and testing completely without documents (16%) should also be

considered as testing methods and studied in software engineering research. Briand [38] points out, in the context of

software of test automation, that testing needs to be done based on technical documents such as state charts and

sequence diagrams that act as input for the test case creation process. The companies participating in this research

relied heavily on manual testing, despite having automated testing in place as well. We think that in manual testing,

knowledgeable individuals are able to perform relevant testing based on their knowledge and with the help of

diverse types of documentation, such as natural language requirements, manuals, or reports.

We are not aware of any prior work that provides detailed data of documents used in industrial software defect

detection. However, from industrial studies of software testing, we can find snippets of results on test case usage in

manual testing. Ahonen et al. [21] report in a case study that the studied companies had poor test case design

management. Engström and Runeson [39] found that designed test cases had design redundancy and execution

redundancy. Itkonen and Rautianen [22] report that companies with rich GUI products thought that it was

impossible to write test cases for all possible combinations, which was one reason they favored an exploratory type

of testing. In summary, these papers indicate that in industrial practice the test cases often do not match the

examples presented in the textbooks. Itkonen and Rautiainen [22] also indicate that often manuals are used as a basis

for exploratory software testing. This matches our results as the product manual was one document often used for

software testing.

Our work relates to the connection between requirements and testing that has gained some attention in recent

years [40-43]. In those works, the majority of attention has been given to model-based testing, formal approaches,

and traceability between requirements and testing. Barmi et al. conclude that there is still a significant gap between

requirements and testing in research [41]. In this paper, we confirm the important connection between requirements

and testing activities by showing that product requirements are an often-used document (3rd most frequently) when

detecting defects. This emphasizes the need for more research on the use of requirement documentation in testing.

Defect detection and testing in particular without using documents (the 4th most frequent response) has been

studied under the names of exploratory software testing and ad-hoc testing (see [11] for more references). However,

none of the past works have indicated the share of defect detection activities that are performed without documents.

Our initial assumption was that the share of document-less defect detection would have been higher since we knew

that the companies did not use test cases very often. Thus, it appears that the lack of test case usage is actually

compensated by the use of other documents. In our prior work [24, 25] we have compared testing with test cases and

without test cases (exploratory testing with the user manual as source documentation). The results of this paper

reveal the diverse set of documentation used in defect detection, which suggests for more research on how different

development documentation can be utilized in testing, and what types of documentation would be most beneficial

for testing.

 The use of messages, reports, or tickets in software defect detection relates to communication between people,

e.g., customer support gets messages or defect reports from customers and reveal defects when working on such

requests. Communication and collaboration in software engineering has been studied in recent years, focusing on

distributed software development [44]. Grechanik [45] presents challenges and a research agenda for using

distributed test organization in software development. However, we are not aware of any studies that would have

focused on communication usage when detecting defects.

The responses to the “other document” question also revealed that the information source can be another person

that is consulted about the application, instead of actual documents. Previous versions of the software provide

another information source that is used when detecting defects. These sources should be further investigated in the

future. For example, communication studies could be used to identify the potential application experts. Expertise

mining has already been presented in a software implementation area where expertise regarding the use of software

functions has been mined from a software repository [46]. However, the mining approach might not work for

finding high-level product expertise, as the software repositories may not contain such information.

As a summary, the document used in testing, as well as defect detection activities in general, is highly diverse

and the weight of test case documentation seems to be over-emphasized in the literature. Our results highlight the

importance of researching the effective use of various information sources in defect detection activities. Especially

the use of requirements documentation and communication mechanisms other than documents to support testing and

defect detection are important research areas.

4.4. RQ4 Knowledge

The fourth research question was: “What are the shares of defects found with different test oracles?” We found

that the source of a software-testing oracle, i.e., knowledge about whether the software works correctly or not, was

general knowledge (28%), system knowledge (27%), customer knowledge (21%), or domain knowledge (16%). We

found that in only 7% of the defects, the oracle was a document indicating the correct result. This finding contradicts

the traditional wisdom that prescribed expected results are a crucial part of the test documentation. If we compare

this to the results regarding the document usage in the previous research question, we see that 84% of defect

detection activities involved some kind of documentation, but only 7% involved a documented oracle. This might

seem conflicting, but we think that it indicates that documents have an important role in detecting defects, but do not

often explicate the correct result in practice. For example:

· A user manual indicates how a certain feature works, but it cannot possibly indicate all of the ways the

feature can fail.

· Some failures are related to how the entire system functions, e.g., if a feature X works in a certain way, then

feature Y should also work in the same way.

· Some failures only become apparent when one understands the users’ work and goals, as presented in more

detail in our previous work [11].

Thus, documents provide valuable input to defect detection, but they are not solely comprehensive and do not

contain all of the answers and instructions. These results extend our earlier study, where we studied the knowledge

types used in software testing from video-recorded test sessions [11]. In that research, we described an extensive use

of personal knowledge for defect detection and found that 20% of the defects were so called windfall defects, i.e.,

revealed in features that were not the primary target of the testing session in question. For these type of defects, the

testers cannot have any prepared documentation on the expected test results, but they still reveal defects based on

their knowledge and experience. This is one phenomenon that explains the low contribution of documented oracles

in manual testing. Similarly, in related work it has been found that software test teams also find defects in

components that they are not testing [47, 48].

The results of this paper emphasize the role of personal knowledge in defect detection and extend our earlier field

study [11] through a larger set of survey data. These results reveled the high reliance on personal knowledge as a

test oracle, even though a variety of documentation was used to support defect detection in general. Future research

should find ways of utilizing personal knowledge in defect detection, study how to support building relevant

knowledge in testing organizations, and study how to utilize the knowledge outside of testing organizations in defect

detection.

4.5. Effects of the context and generalizability of the results

Importance of the context has been widely discussed in software engineering research, as such contextualization

increases understanding about the generalizability of the results. Whereas past work highlights the importance of

specifying as much as possible of the context [49-51], more recent work by Dybå et al. [52] points out that such an

approach leads to a context space that has more combinations than there are atoms in the universe. Thus, Dybå et al.

[52] suggest that authors focus, instead, on the context that can improve the development of theories and explain the

phenomena, its constraints and opportunities. Following the suggestions of Dybå et al., we next discuss three context

variables that we think can explain the results, and we also provide analytical reasoning as to why they are likely to

do so. The three important context variables in our cases were: a rich graphical user interface (GUI); a small number

of technically different solutions offered over time; and a relatively low separation of the testing organization.

We need to point out that the authors’ understanding of these companies is much deeper than the survey results

presented in this paper, as we have studied these organizations in our prior works as well [10, 31-33]. This

discussion of context also acts as an initial proposal for theory explaining the software defect detection and testing in

software organizations (see Table 16 for a summary). Naturally, many future works are needed with a much larger

set of companies to see if our reasoning, based on our understanding of the case companies, actually leads to an

empirically supported theory.

4.5.1. Human as a user—GUI or no GUI

The first important context variable is the role of the humans as users: Is the software meant to be used by

humans directly through a GUI or is the software used indirectly as part of a larger system? An example of direct

use would be a calendar application, or an application that is used to draw blue prints for engineering products, such

as airplanes. Examples where humans are indirectly using the software could include ABS-brakes or telecom

switches.

We think that direct human access through a GUI has a big impact on how software testing is done and what the

share of implicit defect detection and contribution of non-testers is. This factor affects our results concerning the

responsibilities and activities (RQ1 and RQ2). When software has a GUI, it gives primary access to the software to

all people who work with the product. Most of the people in the organization must also be able to use the product.

For example, sales and customer consultants must understand how to use the application in order to sell it and in

order to train the users of the software. When people in various roles can use the product, it also means that they can

test it, i.e., they can find defects and assess the quality.

When there is no direct human access to the software, this all changes. For example, sales people cannot

advertise the features of the product with GUI demonstrations, but they can highlight the performance, standard

compliance, reliability, and the costs of a telecom switch, for example. When no GUI is present, people in various

roles still have an understanding about the product, but since they cannot really use the product, they cannot really

test it, either. Thus, we think that the amount of explicit defect detection and the involvement of testers are likely to

increase when humans have no, or only limited, access to the features of the product.

4.5.2. Small number of technically different solutions leads to knowledge accumulation and shared interest

The second context variable is the number of technically different solutions the unit offers over time. We think

that if an organizational unit focuses only on one, or a few, solutions over a longer period of time, this leads to

accumulated domain knowledge and shared interest in improving the solution. In all our organizational units, only

one or two technical solutions was offered, and we think this explains our results regarding the responsibilities

(RQ1), document use (RQ3), and knowledge use (RQ4). We purposefully use the term solution as we think that it

does not matter whether the software solution is a COTS type of software product, or a long-lived bespoke software

system, e.g., a governmental pension calculation system2—in both cases, the people working in the organization

would accumulate knowledge of the solution, and furthermore, would share an interest to the solution the company

is offering.

The knowledge accumulation of the solution by the personnel explains our results, because staff members with a

long history with the product can find relevant defects by using their knowledge of the product, its usage scenarios,

users, and history. In an opposite case, where a software company would offer several types of solutions and short

term projects, there would be much less knowledge accumulation as the software, its customers, and project teams

would change between projects and products. Thus, we think that the knowledge accumulation has an effect on the

amount of personal knowledge used in detecting defects. Consequently, also the need for documentation is affected,

as highly knowledgeable personnel would need less-detailed documentation. We think this can explain why test

cases were seldom used as knowledgeable staff could find defects without such detailed instruction, only using other

types of documents.

The shared interest of the solution the company is building also explains our results. Although the internal

competition of resources, even in our cases, can make people favor their own project, there is still a shared interest

in the solutions since the staff understand that the company’s success is ultimately tied to a success of the core

solution. This can explain why different roles participate in the testing effort, the small share of testers, and explicit

testing. In an opposite case, where a company has several solutions that are not related to each other, the interest to

2 Our first impression was that COTS vs. bespoke would be an explaining factor in our results. Then we talked about the knowledge
accumulation with a practitioner that worked in a company that provided a single tailor-made solution for calculating pensions to a large
governmental organization, and he mentioned that they had similar findings. This discussion led to the refinement of this context factor.

detect and report defects over project and product boundaries might be lower. This would be especially true when a

person would be required to work with a solution one is not familiar with. This way the number of solutions over

time affects the shared interest and accumulated knowledge of the software.

Manager of organization B2 (the largest one of our cases) pointed out that the size of their organization and

software has led to a situation where knowledge accumulation still happens but different parts of the organization

learn about different things. Thus, knowledge of certain topics varies among organizational units. The manager

pointed out that this unbalanced knowledge distribution has to be taken into account when planning which

individuals should participate in testing.

4.5.3. Organization of testing

Finally, the way testing is organized undoubtedly affects our results. Kit [53] presents seven possible ways to

organize testing starting from lightweight, “testing is each developer’s responsibility” to heavyweight “centralized

test organization with technology center.” Kit highlights that separate testing organization or team provides testers

with test processes, standards, policies, tools, training, and measures. In other words, the separation of testing

increases testing knowledge among testers. On the other hand, having a separate organization for testing breaks the

communication and flow of knowledge from development to testing, and this is even amplified more if the testing is

globally distributed [45]. Our cases highly valued testers’ domain knowledge rather than their testing knowledge

[10]. Our cases (B1 and C) were partly hesitant in having a separate testing organization or team as it might have

reduced the flow of domain knowledge, and they wanted to see testing as a team effort in order to make sure that

quality is every employee’s responsibility. Case B2 had started to create a separate testing to increase their baseline

quality and to have better management of the testing activities. As case B2 was the largest organization, they had the

highest need for such a separate testing organization, yet they still highlighted the idea that quality is everyone’s

responsibility. Thus, the company applied team effort of testing and supported it with separate testing team. Case A

had had a separate testing team for years for the testing of their internal monthly release, but even in case A, each

project also performed testing on the parts they had created on top of the common core. This is visible in the results

as case A had a higher share of explicit testing and a higher number of defects found by testers (see Table 7).

A separate testing organization would reduce the number of roles searching and reporting defects, thus affecting

our results regarding responsibilities (RQ1). A separate testing organization would also increase the defects found

by explicit defect detection, affecting our results regarding activities (RQ2) due to two reasons. First, there would be

more explicit defect detection; and, second, people in other roles might care less about the product quality and make

less efforts to find and report defects, i.e., relying on the safety net of the testing organization. This is also supported

by [45], who states that when a separate testing organization is present, developers typically do not perform unit

testing, which leads to many shallow defects that waste the test organizations’ resources and prevent finding more

relevant or subtle defects. Furthermore, a separate testing organization would most likely use more test-case-based

approaches to defect detection, affecting our results regarding documentation use (RQ3).

There are factors explaining why some companies have a separate testing organization and others, such as many

of the ones we studied, have purposefully decided not to have one. Those reasons further complicate the list of

relevant context factors; however, two of them must be mentioned. First, we think that if the required quality is very

high, then it is more likely that there is a separate testing organization or team. For example, from a case study of the

telecom industry [16], we can find that system integration testing needed over 300 hours (almost two person

months) of effort to find a single defect on average. For telecom, such a high level of quality and associated costs

might be needed, but for the organizations we studied, it would be much too expensive. The second factor

explaining the existence of a separate testing organization might be the number of people working in the company or

the number of people working for a single solution. In a larger company, it would be easier to argue why separate

testing organization would be needed.

Table 16. Most important contextual factors
Context variable RQs affected Explanation

GUI RQ1, RQ2 GUI allows humans without technical skills to use the software and

find defects during several activities of software development.

Small number of solutions RQ1, RQ3, RQ4 Offering a small number of solutions creates shared interest to the

solutions and allows the knowledge accumulation to occur. This

makes it easier and more valuable for the company to have several

roles participate in explicit and implicit defect detection.

Separate test organization RQ1, RQ2, RQ3 A separate testing organization would increase the amount of

testers, explicit defect detection, and formal test documentation.

4.6. Future works

This section presents four avenues for future work. First, one should study the effects of contextual factors

presented in Section 4.5 and in summarized Table 16 in varying contexts to validate our hypotheses of the context

factors and their relationship to software defect detection. This could be done by submitting the survey questions of

this work with additional questions on the context variables to a large number of companies. Then a statistical

relationship could be established, and we could see whether the context variables can explain the results and what is

the strength of the relationship, e.g., is GUI a more prominent factor than a separate testing organization in

explaining the number of responsibilities finding defects.

Second, we think more future studies should be devoted toward implicit defect detection, as past work has mainly

focused on explicit defect detection. Such work can have many forms, ranging from controlled experiments to case

and other real world observation studies. Experiments could be used to study how is defect detection affected if

there are other goals in addition to defect detection, e.g., how is manual testing affected if one has to create training

material for a certain feature while searching defects. Case studies could be used to understand implicit defect

detection in the software industry. As an example of implicit defect detection, Microsoft has used informal defect

detection by the internal use of their products, known as dogfooding or “eating your own dog food,” for 20 years

[15], and beta testing has been a common industry practice for decades [13]. Still, the academic studies of the

implicit defect detection are extremely rare, and the limited knowledge we could find in this area was presented in

Table 15. Future research should also conduct a systematic literature review of this topic, although the lack of

common terminology is likely to make it challenging.

Third, documentation use during manual defect detection should be studied in more detail. Based on this study,

we only know that several documents are used when detecting defects from the software (see Table 11). However,

we have no detailed knowledge on how the documents are used to support defect detection. Perhaps there would be

ways to improve, for example, requirement documents so that they would be better directly suitable for defect

detection.

Fourth, improvements in tools or training would benefit non-testers and implicit defect detection in general. A

recently developed tool is found to be particularly useful for non-testers [20]. Additionally, all systems that

automatically, or semi-automatically, collect crash3 and error data can be viewed as tools that help implicit defect

detection. Prior works have presented successes in analyzing such data [54]. Nevertheless, we think there is still

plenty of work to be done to harness the full potential of non-testers and implicit defect detection.

5. Conclusions

This paper makes four main contributions. First, we classify software defect detection either explicit (software

testing and review activities) or implicit defect detection. In both explicit and implicit defect detection, defects are

detected and software quality is evaluated. However, only in explicit defect detection are the defect detection and

software quality evaluation the primary goals of the activity. In explicit defect detection, we found that testing

revealed roughly ten times more defects than reviews. In implicit defect detection, the defect detection and quality

evaluation happen implicitly while performing an activity with another goal, e.g., preparing for a product

demonstration. We studied explicit and implicit defect detection by asking for the activities wherein the personnel of

four software development organizations detected defects. We found that implicit defect detection revealed a

surprisingly large share of the defects (over 60%). Most notable activities finding defects outside of explicit software

defect detection were programming, helpdesk, and internal usage of the product. As the contribution of implicit

detect detection can be high due to large volume of such activities in comparison to explicit defect detection

activities, we suggest that implicit defect detection activities make a good target for efficient improvements in

overall defect detection. The existing knowledge on implicit defect detection is summarized in Table 15.

Second, we confirm previous findings [10, 19, 20, 23] that defect detection and testing is a cross-cutting activity

involving multiple roles in the companies we studied. Participation in explicit software defect detection activity

comes from a wide spectrum of roles and the contribution of non-testers is important. Combining the role and

activity dimensions of software defect detection is illustrated as the defect detection activity quadrants in Figure 1,

and the illustrative defect detection shares for each quadrant in the surveyed companies are presented in Table 1. We

think that the defect detection activity quadrants can help in understanding the multifaceted phenomenon of software

defect detection.

Third, we studied the role of documentation and knowledge in software defect detection and found that the share

of defects detected with test cases was low (less than 20%). However, the lack of test case usage seemed to lead in

3 For example, Windows Error Reporting http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx
and Google Breakpad http://code.google.com/p/google-breakpad/

using other types of documents and information sources in defect detection, such as product requirements, product

manual, and information from defect database and customer request trackers. Defect detection completely without

documents had a 16% share. Thus, the future studies of manual software testing need to also focus on the quality

and usage of other documents than test cases. Finally, we asked about the oracle used when detecting defects and

found that the tester’s knowledge was applied very frequently as a test oracle while using a document as an oracle

had a 7% share, indicating that documents are used as oracles much more rarely than for supporting defect detection

in other ways.

Fourth, we put forward and discuss three context factors: GUI, number of solutions offered, and organization of

testing, which we think explains our results. We think that our results can be generalized to other companies or

organizational units given that their product has a rich GUI, they offer only a few technical solutions with a long

lifecycle to their customers, and they do not have a substantial, separate testing organization (see Section 4.5 and

Table 16). For example, if the software does not have a user interface, e.g., ABS-brakes, then we think that a far

greater share of defects would be detected with explicit defect detection than in our case companies. Future studies

with a larger set of companies are needed to establish whether these context variables can explain the roles

participating in defect detection, shares of defects found by implicit defect detection activities, the amount and types

of test documentation used, and the type of knowledge applied when recognizing defects.

6. References

[1] Briand,L., "Embracing the engineering side of software engineering", Software, IEEE, vol. 29, no. 4, 2012, pp. 96-96.

[2] Glass,R.L., Collard,R., Bertolino,A., Bach,J. and Kaner,C., "Software testing and industry needs", Software, IEEE, vol.

23, no. 4, 2006, pp. 55-57.

[3] Martin,D., Rooksby,J., Rouncefield,M. and Sommerville,I., "'Good' Organisational Reasons for 'Bad' Software Testing:

An Ethnographic Study of Testing in a Small Software Company", Proceedings of the 29th international conference on

Software Engineering, 2007, pp. 602-611.

[4] Andersson,C. and Runeson,P., "Verification and validation in industry–a qualitative survey on the state of practice",

Proceedings of the 2002 International Symposium on Empirical Software Engineering, 2002, pp. 37-47.

[5] Greiler,M., van Deursen,A. and Storey,M., "Test confessions: a study of testing practices for plug-in systems", 34th

International Conference on Software Engineering (ICSE), 2012, pp. 244-254.

[6] Mäntylä,M.V. and Lassenius,C., "What Types of Defects Are Really Discovered in Code Reviews?", IEEE

Transactions on Software Engineering, vol. 35, no. 3, 2009, pp. 430-448.

[7] Laitenberger,O., Leszak,M., Stoll,D. and El Emam,K., "Quantitative modeling of software reviews in an industrial

setting", Proceedings of the Sixth International Software Metrics Symposium, 1999, pp. 312-322.

[8] Ciolkowski,M., Laitenberger,O. and Biffl,S., "Software reviews, the state of the practice", Software, IEEE, vol. 20, no.

6, 2003, pp. 46-51.

[9] Siy,H. and Votta,L., "Does the modern code inspection have value?", International Conference on Software

Maintenance, 2001, pp. 281-289.

[10] Mäntylä,M.V., Itkonen,J. and Iivonen,J., "Who Tested My Software? Testing as an Organizationally Cross-Cutting

Activity", Software Quality Journal, vol. 20, no. 1, 2012, pp. 145-172.

[11] Itkonen,J., Mäntylä,M.V. and Lassenius,C., "The Role of the Tester's Knowledge in Exploratory Software Testing",

IEEE Transactions on Software Engineering, vol. 39, no. 3, 2013, pp. 707-724.

[12] Klein,B.D., Goodhue,D.L. and Davis,G.B., "Can humans detect errors in data? Impact of base rates, incentives, and

goals", MIS Quarterly, 1997, pp. 169-194.

[13] Dolan,R.J. and Matthews,J.M., "Maximizing the utility of customer product testing: beta test design and management",

J. Prod. Innovation Manage., vol. 10, no. 4, 1993, pp. 318-330.

[14] Harrison,W., "Eating your own dog food", Software, IEEE, vol. 23, no. 3, 2006, pp. 5-7.

[15] Cusumano,M.A. and Selby,R.W., Microsoft Secrets, USA: The Free Press, 1995.

[16] Berling,T. and Thelin,T., "An industrial case study of the verification and validation activities", Software Metrics

Symposium, 2003. Proceedings. Ninth International, 2003, pp. 226-238.

[17] Jones,C., "Software defect-removal efficiency", Computer, vol. 29, no. 4, 1996, pp. 94-95.

[18] Fogelström,N.D. and Gorschek,T., "Test-case Driven versus Checklist-based Inspections of Software Requirements–

An Experimental Evaluation", Workshop em Engenharia de Requisitos (WER 07), 2007, pp. 116-126.

[19] Kasoju,A., Petersen,K. and Mäntylä,M.V., "Analyzing an Automotive Testing Process with Evidence-Based Software

Engineering", Information and Software Technology, vol. 55, no. 7, 2013, pp. 1237-1259.

[20] Mahmud,J., Cypher,A., Haber,E. and Lau,T., "Design and industrial evaluation of a tool supporting semi-automated

website testing", Software Testing, Verification and Reliability, in press,

[21] Ahonen,J.J., Junttila,T. and Sakkinen,M., "Impacts of the organizational model on testing: Three industrial cases",

Empirical Software Engineering, vol. 9, no. 4, 2004, pp. 275-296.

[22] Itkonen,J. and Rautiainen,K., "Exploratory testing: A multiple case study", Proceedings of the International

Symposium on Empirical Software Engineering, 2005, pp. 84-93.

[23] Rooksby,J., Rouncefield,M. and Sommerville,I., "Testing in the Wild: The Social and Organisational Dimensions of

Real World Practice", Computer Supported Cooperative Work (CSCW), vol. 18, no. 5, 2009, pp. 559-580.

[24] Itkonen,J. and Mäntylä,M.V., "Are Test Cases Really Needed in Manual Software Testing? – Replicated Comparison

between Exploratory and Test-Case-Based Testing", Empirical Software Engineering, in press,

[25] Itkonen,J., Mäntylä,M.V. and Lassenius,C., "Defect Detection Efficiency: Test Case Based vs. Exploratory Testing",

Empirical Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium on, 2007, pp.

61-70.

[26] Beer,A. and Ramler,R., "The role of experience in software testing practice", Proceedings of the 2008 34th Euromicro

Conference Software Engineering and Advanced Applications, 2008, pp. 258-265.

[27] Poon,P., Tse,T., Tang,S. and Kuo,F., "Contributions of tester experience and a checklist guideline to the identification

of categories and choices for software testing", Software Quality Journal, vol. 19, no. 1, 2011, pp. 141-163.

[28] Merkel,R. and Kanij,T., "Does the individual matter in software testing?", Swinburne University of Technology, Centre

for Software Analysis and Testing, Technical Report, vol. 1, 2010,

[29] Folstad,A., Anda,B.C.D. and Sjoberg,D.I.K., "The usability inspection performance of work-domain experts: An

empirical study", Interact Comput, vol. 22, no. 2, 2010, pp. 75-87.

[30] Galletta,D.F., Abraham,D., El Louadi,M., Lekse,W., Pollalis,Y.A. and Sampler,J.L., "An empirical study of

spreadsheet error-finding performance", Accounting, Management and Information Technologies, vol. 3, no. 2, 1993,

pp. 79-95.

[31] Mäntylä,M.V. and Vanhanen,J., "Software Deployment Activities and Challenges - A Case Study of Four Software

Product Companies", 15th European Conference on Software Maintenance and Reengineering (CSMR), 2011, pp. 131-

140.

[32] Lehtinen,T.O.A., Mäntylä,M.V. and Vanhanen,J., "Development and Evaluation of a Lightweight Root Cause Analysis

Method (ARCA method) - Field Studies at Four Software Companies", Information and Software Technology, vol. 53,

no. 10, 2011, pp. 1045-1061.

[33] Vanhanen,J., Mäntylä,M.V. and Itkonen,J., "Lightweight Elicitation and Analysis of Software Product Quality Goals –

A Multiple Industrial Case Study", Proceedings of the third International Workshop on Software Product Management

(IWSPM), 2009, pp. 42-52.

[34] Itkonen,J., Mäntylä,M.V. and Lassenius,C., "How do testers do it? An exploratory study on manual testing practices",

Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, 2009, pp.

494-497.

[35] Komssi,M., Kauppinen,M., Pyhäjärvi,M., Talvio,J. and Männistö,T., "Persuading Software Development Teams to

Document Inspections: Success Factors and Challenges in Practice", 2010 18th IEEE International Requirements

Engineering Conference, 2010, pp. 283-288.

[36] Robillard,P.N. and Francois-Brosseau,T., "Saying, I Am Testing, is Enough to Improve the Product: An Empirical

Study", Proceedings of the International Multi-Conference on Computing in the Global Information Technology

(ICCGI'07), 2007, pp. 5.

[37] Basili,V.R., Green,S., Laitenberger,O., Lanubile,F., Shull,F., Sørumgård,S. and Zelkowitz,M.V., "The empirical

investigation of Perspective-Based Reading", Empirical Software Engineering, vol. 1, no. 2, 1996, pp. 133-164.

[38] Briand,L.C., "A critical analysis of empirical research in software testing", Empirical Software Engineering and

Measurement, 2007. ESEM 2007. First International Symposium on, 2007, pp. 1-8.

[39] Engström,E. and Runeson,P., "Test Overlay in an Emerging Software Product Line–An Industrial Case Study",

Information and Software Technology, vol. 55, no. 3, 2013, pp. 581-594.

[40] Uusitalo,E.J., Komssi,M., Kauppinen,M. and Davis,A.M., "Linking requirements and testing in practice", 16th IEEE

International Conference Requirements Engineering (RE'08), 2008, pp. 265-270.

[41] Barmi,Z.A., Ebrahimi,A.H. and Feldt,R., "Alignment of requirements specification and testing: A systematic mapping

study", Fourth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), 2011,

pp. 476-485.

[42] Sabaliauskaite,G., Loconsole,A., Engström,E., Unterkalmsteiner,M., Regnell,B., Runeson,P., Gorschek,T. and Feldt,R.,

"Challenges in aligning requirements engineering and verification in a large-scale industrial context", Requirements

Engineering: Foundation for Software Quality, 2010, pp. 128-142.

[43] Post,H., Sinz,C., Merz,F., Gorges,T. and Kropf,T., "Linking functional requirements and software verification", 17th

IEEE International Conference on Requirements Engineering Conference (RE'09). 2009, pp. 295-302.

[44] Lanubile,F., Ebert,C., Prikladnicki,R. and Vizcaíno,A., "Collaboration tools for global software engineering", Software,

IEEE, vol. 27, no. 2, 2010, pp. 52-55.

[45] Grechanik,M., Jones,J.A., Orso,A. and van der Hoek,A., "Bridging gaps between developers and testers in globally-

distributed software development", Proceedings of the FSE/SDP workshop on Future of software engineering research,

2010, pp. 149-154.

[46] Ma,D., Schuler,D., Zimmermann,T. and Sillito,J., "Expert recommendation with usage expertise", International

Conference on Software Maintenance (ICSM), 2009, pp. 535-538.

[47] Jalote,P., Munshi,R. and Probsting,T., "The When–Who–How analysis of defects for improving the quality control

process", Journal of Systems & Software, vol. 80, no. 4, 2007, pp. 584-589.

[48] Andersson,C. and Runeson,P., "Investigating Test Teams' Defect Detection in Function test", Proceedings of the First

International Symposium on Empirical Software Engineering and Measurement (ESEM), 2007, pp. 458-460.

[49] Kitchenham,B.A., Pfleeger,S.L., Pickard,L.M., Jones,P.W., Hoaglin,D.C., El Emam,K. and Rosenberg,J., "Preliminary

guidelines for empirical research in software engineering", Software Engineering, IEEE Transactions on, vol. 28, no. 8,

2002, pp. 721-734.

[50] Clarke,P. and O’Connor,R.V., "The situational factors that affect the software development process: Towards a

comprehensive reference framework", Information and Software Technology, vol. 54, no. 4, 2012, pp. 433-447.

[51] Petersen,K. and Wohlin,C., "Context in industrial software engineering research", Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering and Measurement, 2009, pp. 401-404.

[52] Dybå,T., Sjøberg,D.I.K. and Cruzes,D.S., "What works for whom, where, when, and why?: on the role of context in

empirical software engineering", Proceedings of the ACM-IEEE international symposium on Empirical software

engineering and measurement, 2012, pp. 19-28.

[53] Kit,E. and Finzi,S., Software testing in the real world: improving the process, ACM Press/Addison-Wesley Publishing

Co., 1995.

[54] Glerum,K., Kinshumann,K., Greenberg,S., Aul,G., Orgovan,V., Nichols,G., Grant,D., Loihle,G. and Hunt,G.,

"Debugging in the (very) large: ten years of implementation and experience", Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, 2009, pp. 103-116.

